If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x+4=24^2
We move all terms to the left:
2x^2+4x+4-(24^2)=0
We add all the numbers together, and all the variables
2x^2+4x-572=0
a = 2; b = 4; c = -572;
Δ = b2-4ac
Δ = 42-4·2·(-572)
Δ = 4592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4592}=\sqrt{16*287}=\sqrt{16}*\sqrt{287}=4\sqrt{287}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{287}}{2*2}=\frac{-4-4\sqrt{287}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{287}}{2*2}=\frac{-4+4\sqrt{287}}{4} $
| 4i+5=13 | | 13a-12a=17 | | 2x+13=13x-37 | | 8m+2m=6m+4m | | x=24=39 | | 7+(-3)x=6+x | | 4x-10=3x+3-5 | | 18+y=47 | | 4x+40=3x+30+2x-10 | | 7b-1=5+b | | x^2+(x+2)^2=24 | | 4x+30=3x | | v+1.72=4.55 | | 4x-6+4x-6+3x+18=83 | | (2x+1)^2-5(2x+1)+6=0 | | 8i-1=-73.8 | | -1/5b=-12 | | 7x-x-2=10 | | (14+19+q)/3=17 | | Y+8=-7-2y | | 12x+8=2x+30 | | (3n+2)=(2n+1) | | -3(2.5x+4.2)=2.7x−x+2(4.28) | | 8x-1=-73.8 | | y=10/17 | | (14-2x)(20-2x)=128 | | 5e+2e+e+1=7 | | 14=2(f=3) | | 8x−1=−73.8 | | -22.8=-3.6+w/6 | | 5z+1=26 | | 3s−9=21 |